Power and sample size calculation for neuroimaging studies by non-central random field theory
نویسندگان
چکیده
Determining power and sample size in neuroimaging studies is a challenging task because of the massive multiple comparisons among tens of thousands of correlated voxels. To facilitate this task, we propose a power analysis method based on random field theory (RFT) by modeling signal areas within images as non-central random field. With this framework, power can be calculated for specific areas of anticipated signals within the brain while accounting for the 3D nature of signals. This framework can also be extended to visualize local variability in sensitivity as a power map and a sample size map. We validated our non-central RFT framework based on Monte-Carlo simulations. Moreover, we applied our method to a blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) data set with a small sample size in order to demonstrate its use in study planning. From the simulations, we found that our method was able to estimate power quite accurately. In the fMRI data analysis, despite the small sample size, we were able to determine power and the number of subjects required to detect signals.
منابع مشابه
Spartan Gibbs Random Field Models for Geostatistical Applications∗
The inverse problem of determining the spatial dependence of random fields (inference of the spatial model) from experimental samples is a central issue in geostatistics. We propose a computationally efficient approach based on Spartan Gibbs random fields. Their probability density function depends on a small set of parameters that can be determined by matching sample constraints with correspon...
متن کاملBayesian Determination of Sample Size in Longitudinal Studies with Binary Responses Using Random Effects Models
Sample size determination is important in all statistical studies including longitudinal studies. This is usually done by considering a target power to reduce the costs of sampling. Choosing the right sample size using efficient methods, ensures that the researcher achieve goal of the study, by spending the least amount of energy, time and money. In this article, using a method based on simulat...
متن کاملOptimal Non-Parametric Prediction Intervals for Order Statistics with Random Sample Size
In many experiments, such as biology and quality control problems, sample size cannot always be considered as a constant value. Therefore, the problem of predicting future data when the sample size is an integer-valued random variable can be an important issue. This paper describes the prediction problem of future order statistics based on upper and lower records. Two different cases for the ...
متن کاملSample size estimation in epidemiologic studies
This review basically provided a conceptual framework for sample size calculation in epidemiologic studies with various designs and outcomes. The formula requirement of sample size was drawn based on statistical principles for both descriptive and comparative studies. The required sample size was estimated and presented graphically with different effect sizes and power of statistical test at 95...
متن کاملA Comment on Sample Size Calculation for Analysis of Covariance in Parallel Arm Studies
We compare two sample size calculation approaches for analysis of covariance with one covariate. Exact simulation studies are conducted to compare the sample size calculation based on an approach by Borm et al. (2007) (referred to as the B approach) and an exact approach (referred to as the F approach). Although the B approach and the F approach have similar performance when the correlation coe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2007